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The variational problem of determining the optimum (with respect to
weight) profile of a radiating disk is formulated and solved. The results
of a computer calculation are presented. Radiating disks of constant
thickness, triangular profile and optimum profile are compared in
terms of weight.

There have been numerous studies of various ra-
diator elements for dissipating heat under vacuum
conditions. Flat fins of various shapes have been
thoroughly investigated [1-4], but the same cannot
be said of radiating disks. In 5], which is concerned
with radiating surfaces, only the premises for the
formulation of the problem of a system of radiating
disks are given. In [6] the problem of determining
the dimensions of a disk of constant thickness and
optimum weight is formulated and the data needed for
the calculation are presented.

The present paper is a development of [6] and
includes the formulation and solution of the variational
problem of determining the profile and dimensions
that will give the minimum ratio of disk weight to
radiated heat, The starting data are: the radius (R) of
the internal opening of the disk, the temperature (Ty)
at the surface of the internal opening, the quantity of
heat (Q) radiated by the disk, the thermal conductivity
and density (A, o) of the disk material, and the emis-
sivity (&) of the radiating surface.

In [6] on the basis of a consideration of the heat
balance for an element xdxdq of the disk under condi-
tions of zero ambient temperature (Fig. 1) and the
expression for the relative weight of the disk (y is the
ratio of disk weight to radiated heat), it was shown

Fig. 1. Disk geometry.
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that the relative weight of the radiating disk is a prod-
uct of two factors, the first of which depends only on
the starting data:

1
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Here, II; is the radiating perimeter at the base; in
our case, Iy = 47R; ¢ = Fx/F, is the ratio of the
cross-sectional area of the disk in section x to the
corresponding area at the base; c¢, the conductivity
parameter, is given by the expression

o 80’7‘3H2H0
=R, (1)

and Q, the efficiency of the disk, expressed by the
formula
1

Q=@ +moear, 2)
0

is determined by solving the nonlinear differential
equation

d(@de/dt)

p” = ¢ (1 4 k) 6* (3)

with the boundary conditions 9 =1 at t = 0 and dg/dt =
=0att=1.
In expressions (2) and (3),

0=T/T,, k= H/Rand t = x/H,

where T is the temperature of the disk.
The need to radiate a given quantity of heat imposes
the additional condition

5 Q
& ea Ty IR e )
The quantity g characterizes the heat load on the radi-
ating perimeter of the base of the disk and, in the
optimization problem, is given.

Thus, we may conclude that the solution of the
problem of determining the profile and dimensions
of the disk of minimum weight depends only on the
quantity q and reduces to finding the function ¢ and the
parameters ¢ and k that minimize the functional

1
5' edt
D=2 (5)

with constraints (1)—(3) and (4).
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Fig. 2. Geometric and weight characteristics
of radiating disks: 1) disks of constant thick-
ness; 2) disks of triangular profile; 3) disks
of optimum profile; 4) ratio of the weight of
disks of constant thickness to the weight of
corresponding disks of optimum profile;
5) ratio of the weight of disks of constant
thickness to the weight of disks of triangular
profile; 6) ratio of the weight of disks of
triangular profile to the weight of disks of

' optimum profile,

It is not possible to solve this problem analytically.
Instead we use one of the direct methods of solving
variational problems—the method of gradients [7)].
This method requires that the form of the sought
extremal be given. In our case, it is convenient to use
a function of the following form:

- ab —ay —ayt
g= "7
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The coefficients ay, a,, and g3 are found from the
conditions

Py == Pk s (P;=1 = (P’,Z ande,_,= (Pé'

The maximum of functional (5) was determined on
an M-20 computer. Since the numerical machine solu-

Table 1

Coefficient of the Optimum Profile Function

- to:
Coeffi- Value of coefficients for g equal to

clent 075 | 1 | 25 | 50 | 75 | 100
ay 0.2391| 0.3250( 0.5375] 0.7000f 0.9000; 0.95
as 0.5769| 0.6871 0.8699| 0.9492| 0.9948| 0.9987
as —0.3421 | ~-0.3653 | —0.3337 | —0.2497| —0.0948 | —0.0488

tion does not admit a value of zero for the function ¢,
0.01 was taken, instead of zero, as the minimum value
of that function, This does not have any appreciable
effect on the optimum profile and dimensions of the
disk.

The calculations show that, for the range of values
of q considered, the optimum profile is characterized
by ¢}, = 0 and @) = 0.01.

Table 1 and Fig. 2 show the results of solving the
variational problem in the form of the dependence on
q of: the coefficients a;, ay, and a3; the quantity k,
characterizing the thickness of the disk at the base;
and the quantity ¢, characterizing the relative weight
of the disk. The relation between z and the thickness
of the disk at the base (hy) is given by the formula

2 QL z.
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The variation of the thickness of the disk along the
radius is characterized by the relation

hihy = /(1 + ).

The necessary data for constructing the optimum pro-
file are presented in Table 2,

To compare radiating disks of optimum profile with
disks of other simpler profiles, we plotted (Fig. 2)
curves characterizing the least weight and optimum
dimensions of radiating disks of constant thickness
and disks of triangular profile. The comparison shows
that going over from disks of constant thickness to
disks of triangular profile makes it possible to reduce
the weight of the disk by a factor of 1.1~1.4 in com-
parison with a disk of triangular profile, and by a
factor of 1.9~2.9 in comparison with disks of constant
thickness. In this case, the greater the heat that the
disk must radiate, the greater the advantage in weight.

Table 2
Variation of Relative Thickness of Disk of Optimum Profile along

the Radius

Ratio h/h, for q equal to:
t

0.75 I 1.25 ] 2.5 I 5.0 l 7.5 10.0

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.1 0.6736 0.6466 0.5972 0.5271 0.4848 0.4505
0.2 0.4502 0.4205 0.3711 0.3074 0.2734 0,2468
0.3 0.2961 0.2713 0.2331 0.1861 0.1630 0.1450
0.4 0.1896 0.1714 0.1449 0.1131 0.0983 0.0867
0.5 0.1166 0.1044 0.0874 0.0673 0.0583 0.0511
0.6 0.0676 0.600 0.0500 0.0330 0.0329 0.0288
0.7 0.0360 0.0316 0.0261 0.0197 0.0171 0.0149
0.8 0.0170 0.0147 0.0119 0.0089 0.0076 0.0066
0.9 0.0072 0.0060 0.0046 0.0033 0.0028 0.0024
1.0 0.0042 0.0033 0.0023 0.0016 0.0013 0.0011
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